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Motivation
• Valuable information may be contained in doctor’s notes or other documents

containing free-text, but it is difficult to analyze information in free-text be-
cause the information first has to be extracted and put in a structured database

• Manually extracting the information is time- and labor-intensive, and may be
impractical for a large database, and Natural Language Processing (NLP) tech-
niques provide an automated way of extracting information from large quan-
tities of text

• However, researchers may hesitate to use information derived using NLP in a

statistical analysis (e.g. to estimate risk of disease) because the information is
extracted with a degree of error. When predictors are “measured with error”
the resulting estimates are often biased, among other problems.[1]

• We show that our maximum likelihood (ML) method uses validation data to
adjust the NLP estimates and enables the free-text information to be analyzed
to produce accurate estimates of risk of disease with powerful associated in-
ference procedures. ML method bridges the gap between the unstructured
database and clinically interesting research findings.

Figure 1: Overall picture – from unstructured text to clinical results
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Methods: NLP
• Rule-based smoking extraction based on limited number of features (e.g.,

“smok”, “tobac”, “cigar”)[3].

• Manually reviewed a subset of discharge summaries to create dictionary of
smoking-related terms.

• Positive smoking status, e.g. “smoker” and “pack-years”

• Negative smoking status, e.g. “denies smoking” and “no history of tobacco”.

• Used regular expressions containing these terms to search text.

Methods: Maximum likelihood
The likelihood is the product of the likelihoods of the validation and non-validation
samples. Yi=1 if patient i has smoking-related cancer, 0 otherwise; Xi=1 if patient
i is a smoker according to validation, 0 otherwise; Wi=1 if patient i is a smoker
according to NLP, 0 otherwise.
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Data
Table 1: Cancer and smoking data
Smoking- NLP smoker Total
related True W = 1 W = 0
cancer smoker
Validation sample
Y = 1 X = 1 21 2 23

X = 0 1 17 18
Y = 0 X = 1 187 39 226

X = 0 24 448 472
Subtotal 233 506 739
Non-validation sample
Y = 1 466 476 942
Y = 0 5161 11365 16526
Subtotal 5627 11841 17468
Total 5860 12347 18207

Example: Smoking and risk of cancer
Figure 2: Case Study
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• Based on MIMIC-II [2]: an ICU
database with 18,000+ patients.

• The ML OR is 2.7, ie. smokers have
2.7 times the risk of cancer of non-
smokers.

• The ML estimate is close to the
(true) validation estimate, but has
lower variability.

Results: Simulations
• We compared the estimates of the OR for each of the 3 methods.

• As the sensitivity increases, all methods tend to get less biased.

• The ML method (RED) performs the best, with the average simulated value
closest to the true value of the OR of 1.2.

• The NLP estimates (BLUE) underestimate the true OR.

• The validation sample estimates (GREEN) tend to overestimate.

• Similar results are obtained for OR=2 (not shown).

Figure 3: Mean estimates of OR obtained from all 3 methods, as sensitivity and specificity vary, with true OR=1.2.
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• The variability of the estimates is also important. Two measures used:

– % Coverage = the percent of times the true OR is contained in the confi-
dence interval produced by each method

– % Significance = the percent of times the methods found a significant dif-
ference between the groups, given that there is a true difference between
smokers and non-smokers when OR=1.2 or OR=2.

• For % coverage, the ML and validation sample estimates are both range around
95% – which is the correct value – with the validation sample esimates doing a
little better than ML for OR=2. NLP does not have a coverage close to 95%.

• For % significance, ML method performs the best for OR=2, with the ML
method finding signifcant difference between 90-100% of the time.

• For OR=1.2, none of the methods detect a significant difference more than 50%
of the time.

Figure 4: Range of coverage and power of methods over all
simulation scenarios
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Conclusions
• The ML method can correct for the bias in NLP predictors and allow areas

of free-text in a database to be analyzed using statistical prediction models,
where previously the information could not be used reliably.

• Information contained in clinical notes can be extracted via NLP and used to
predict risk for patients.
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